LCIO
The data model of the persistency framework for LC detector simulation

Frank Gaede, DESY, IT
4th ECFA/DESY LC Workshop
Amsterdam April 1st-4th 2003

Outline

- Introduction
- Software/Status (brief, see talk in simulation session)
- Data model
 - simulation
 - reconstruction
- Summary
Introduction

- At Prague workshop decided to have
 Data format/persistency task force:
 "Define an abstract object persistency layer and a data model for linear collider simulation studies until the Amsterdam workshop."

- People:
 - Ties Behnke - DESY/SLAC
 - Frank Gaede - DESY
 - Norman Graf - SLAC
 - Tony Johnson - SLAC
 - Paulo Mora de Freitas - IN2P3

Motivation

LCIO Persistency Framework

- Generator
- Simulation
- Reconstruction
- Analysis

geometry

LCIO, 4th ECFA/DESY Workshop, Amsterdam 2003

Frank Gaede, DESY IT
The Persistency Framework

Meetings

- Meeting at SLAC 12/09-12/13/02:
 (T. Behnke, F. Gaede, N. Graf, T. Johnson)
 - agreement to have common persistency framework in one US group (hep.lcd) and in the European group: LCIO
 - agreement on the (first) implementation format
 - first definition of the data model

- Meeting at Ecole Polytechnique 01/14-01/15/03:
 (F. Gaede, P. Mora de Freitas, H. Videau, J.-C. Brient)
 - agreement to use LCIO as the output format for the Mokka simulation framework
 - further discussions and refinement of the data model (reconstruction)

- Presentation and discussion of the data model at CERN miniworkshop of detector performance group 25/02/03
- Several phone meetings
Status of LCIO

- need Java, C++ and f77 interface
- C++ implementation ready for testing (sim.)
 - currently implemented into Mokka framework
- f77 prototype
- Java development underway
- SIO as persistency format
- data model for simulation and reconstruction
 - simulation (settled)
 - reconstruction (initial proposal)

Overview of the Data Model:

- RunHeader
- SimHeader
- RecoHeader
- Event
- MCParticle
- TrackerHit
- CalorimeterHit
- Reco
- Track
- Cluster
- ReconstructedObject
- ReconstructedParticle
- SIM
Data model - LCRunHeader

- **block**: RunHeader
 - int: runNumber
 - string: detectorName
 - string: description
 - string[]): activeSubdetectors

=> describes the run setup

Data model - LCEventHeader

- **EventHeader**
 - int: runNumber
 - int: evtNumber
 - string: detectorName
 - String[]): subdetectorName
 - blockNames:
 - string: blockName
 - string: blockType

=> describes event data –
needed for fast skip
Data model – LCEvent (sim)

- **Event**
 - int: runNumber
 - int: evtNumber
 - string: detectorName
 - String[]: subdetectorName
 - long: timeStamps

- **MCParticle**
 - ptr: parent
 - ptr: secondParent
 - ptr[]: daughters
 - int: pdgid:
 - int: hepevtStatus
 - (0, 1, 2, 3 HepEvt)
 - (201, 202 sim. decay)

- **MCParticle cont.**
 - double[3]: start
 - (production vertex)
 - float[3]: momentum
 - (at vertex)
 - float: energy
 - float: charge
Data model - LCEvent (sim)

- TrackerHit
- string: subdetector
 - int: hitFlags (detector specific: Id, key, etc.)
 - double[3]: position
 - float: dEdx
 - float: time
 - ptr: MCParticle

Data model - LCEvent (sim)

- CalorimeterHit
- string: subdetector
 - int: cellId0
 - int: cellId1
 - float: energy
 - float[3]: position – optional (file size)
 - particle contributions:
 - ptr: MCParticle
 - float: energyContribution
 - float: time
 - int: PDG (of secondary) - optional
Data model - LCEvent (reco)

- **OutputHeader**
 - int: isrFlag
 - float: colliderEnergy
 - int: flag0 (to be defined)
 - int: flag1 (to be defined)
 - int: reconstructionProgramTag
 - float: Bfield

 --> could be combined with global header…

Data model - LCEvent (reco)

- **Track**
 - int: tracktype (full reconstr, TPC only, Muon only, etc.)
 - float: momentum \(\frac{1}{p} \)
 - float: theta
 - float: phi
 - float: charge
 - float: d0 (Impact Parameter in r-phi)
 - float: z0 (Impact Parameter in r-z)
 - float[15]: cov.matrix
 - float: reference point \((x, y, z)\)
 - float: chi**2 of fit
 - float[10]: dEdx (weights and probabilities)
 - TrackerHits: - optional
 - ptr: TrackerHit
Data model - LCEvent (reco)

- **Cluster**
 - int: detector (type of cluster: ECAL, HCAL, combined...)
 - int: clustertype (neutral, charged, undefined cluster)
 - float: energy
 - float[3]: position (center of cluster x, y, z)
 - float[6]: errpos (cov. matrix of position)
 - float: theta (intrinsic direction: theta at position)
 - float: phi (intrinsic direction: phi at position)
 - float[3]: errdir (cov. matrix of direction)
 - float[6]: shapeParameters (definition needed)
 - float[3]: weights (compatible with cm., had., muon)
 - CalorimeterHits: - optional
 - ptr: CalorimeterHit
 - float: contribution

- **ReconstructedParticle**
 - int: primaryFlag (0: secondary, 1: primary)
 - int: ObjectType (charged/neutral particle)
 - float[3]: 3-Vec (px, py, pz)
 - float: energy
 - float[10]: covariancematrix
 - float: charge
 - float[3]: reference position for 4-vector
 - float[5]: PID_type (hypotheses for e, g, pi, K, p, ...)

- **ReconstructedParticle cont.**
 - Tracks:
 - ptr: Track
 - float: weight
 - Clusters:
 - ptr: Cluster
 - float: weight
 - MCParticles:
 - ptr: MCParticle
 - float: weight

Have separate MC-link object?
Data model - LCEvent (reco)

- **ReconstructedObject**
 - int: ObjectType (jet, vertex, ...)
 - float[5]: 4vec (4-vector of object (px, py, pz, E, M))
 - float[3]: reference (position)
 - float[15]: covariance matrix
 - reconstructedParticle:
 - ptr: reconstructedParticle
 - float: weight

=> generic reconstructed objects, linked to reconstructed particles

Summary

- LCIO is a persistency framework for linear collider simulation software
 - Java, C++ and f77 user interface
 - currently implemented in simulation frameworks:
 - hep.lc
 - Mokka/BRAHMS-reco

- datamodel for simulation and reconstruction output
 -> comments welcome!

- see LCIO homepage for more details: