Internet Protocol Network Multipathing (Updated)

Mark Garner, Enterprise Engineering

Sun BluePrints™ OnLine - November 2002

http://www.sun.com/blueprints

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95045 U.S.A.
650 960-1300

Part No.: 806-7230-11
Revision 2.0
Edition: November 2002
Internet Protocol Network Multipathing

This article is an update to the article published in August 2001. It has been updated primarily because of Bug ID: 4710499, “Synopsis: rpc.bootparamd cannot send out reply with physical interface flag DEPRECATED.” More details on this are presented later in this article and from http://sunsolve.sun.com/. This article also removes the reference to a dummy data address, this is now termed an additional data address. This is to avoid any confusion. While the address might not be used for inbound connections if it has not been advertised in a naming service or otherwise published. It will be utilized for outbound network connections. This additional address was originally included to circumvent a problem, Bug ID: 4426000, that could occur on boot with Solaris™ 8 Operating Environment (Solaris 8 OE) systems. This problem has been fixed in Solaris 9 OE.

This article describes the features and configuration of Internet Protocol network multipathing (IPMP). IPMP can provide network adapter resilience and increased data throughput by using multiple network adapters connected to the same subnet.

The intended audience for this article is systems designers or administrators. This article is a concise overview of the Solaris 8 OE IP Network Multipathing Administration Guide documentation. The following elements are addressed:

■ Design Considerations
■ Configuration
■ Basic Management

This article also discusses two essential considerations for IP network multipathing that are not covered in the administration guide. See sections, Data Address Definition within the Design Considerations section and the addendum, The Problem With ping.

This article covers the IPv4 network protocols—for information on IPv6, see the IP Network Multipathing Administration Guide section of the Solaris 8 OE documentation. Go to: http://docs.sun.com/
Note: The commands of IP network multipathing are not listed in the man pages of the Solaris OE version 8 update 2 (10/00), but are in later releases.

Functional Overview

IP network multipathing was introduced in the Solaris 8 OE update 2 (10/00) software release. This feature enables a server to have multiple network ports connected to the same subnet.

Network adapters function in the following modes:
- Active-active
- Active-standby

IP network multipathing coupled with multiple network connections per subnet provide a server with one or both of the following advantages:
- Resilience from network adapter failure
- Increased data throughput for outbound traffic

To provide resilience, IP network multipathing detects the failure or repair of a network adapter, and switches the network address to or from an alternative adapter. If more than one network adapter is active, outbound packets are spread across adapters, thereby increasing data throughput.

Design Considerations

IP network multipathing requires hardware and Solaris OE configuration. The following sections cover the design considerations for the hardware and the Solaris OE configuration.

IP network multipathing has the following requirements (discussed in more detail later in this section):
- Solaris OE version 8 update 2 (10/00) or later.
- Unique MAC addresses on each network interface.
- Multiple network adapter interfaces (of similar type) on each subnet for a resilient configuration.
- A network adapter group name.
- Test addresses on every network interface.
- Data addresses on every network interface.
- Network interfaces should run in active mode, not standby.

In addition, there is a problem with `ping` in both: Solaris 8 OE update 2 (10/00), and Solaris 8 OE update 4 (04/01). This problem is fixed in Solaris 8 OE update 5 (07/01). The addendum in this article, *The problem with ping*, describes the problem in detail and offers three possible workarounds.

The terms *test address* and *data address* are used throughout this article. The purpose of the test addresses is to detect failure and recovery of an interface only. The test addresses are tied to each interface for this purpose. Test addresses should not be used for server-client communication. In addition, the data addresses migrate between interfaces in the event of an interface failure, and should be used exclusively for host-client communication.

Solaris OE Version

In this article, all testing, observations, and examples use the Solaris 8 OE update 2 (10/00) version except where otherwise stated.

Unique Ethernet MAC Addresses

The default configuration for Sun hardware is that all network interfaces (on a specific server) have the same Ethernet MAC address. If more than one network interface is to be connected to the same subnet, the default configuration must be changed to avoid a MAC address conflict. That is, each interface connected to the same subnet must have a different MAC address.

Network Adapter Selection

A resilient network configuration requires that two or more network interfaces be connected to the same subnet.

Note: IP network multipathing can be configured with a single network interface; however, only failure detection will be operative.
To increase resilience (where the hardware configuration permits), network interfaces should be located on different I/O boards. Create a symmetrical configuration (pairing ports on I/O cards in a mirrored fashion) to avoid confusion. Therefore, ports with the same numbers will be connected to the same subnets and belong to the same IP network multipathing group.

Note: IP network multipathing does not work with dissimilar network interfaces—for example, Token Ring with Ethernet, or SunATM™ interface with Token Ring, etc.

Network Adapter Group Name

Configuration of multiple network interfaces within Solaris OE is performed by grouping the interfaces into an IP network multipathing group. A name should be chosen for each group that describes the network function—for example, production, backup, administration, etc.

Test Addresses Definition

Test addresses must be defined for each interface. The `in.mpathd` daemon uses these addresses in the detection of network interface failures and repairs. A test address must be a valid *routable* address. For the purposes of fault detection and isolation, include the name of the device in the name of the test address. This way, a test address on `qfe0` will have a “-qfe0” suffix as its name. These addresses should not be used for inbound connections, as they will not failover in the event of an interface failure. For this reason, do not advertise them in a naming service or by other means. It is, in fact, the use on the `-failover` flag during configuration that causes `in.mpathd` to choose these addresses as test addresses because they will not failover.

Data Address Definition

The IP network multipathing group requires addresses be defined for data communication between server and client. It is these data addresses that migrate between interfaces during a failure.
We recommend that you define data addresses for every interface in an IPMP group to allow IPMP to load spread outbound connections between all interfaces in the group. This means that connections will emanate from different IP addresses on the server. In a few cases, secure shell (SSH) is one, this will require additional consideration, for example all the IP addresses will need to be registered for SSH.

The second reason for defining data on every interface is to prevent a potential problem on Solaris 8 OE systems. This problem does not occur with Solaris 9 OE. It occurs where data addresses are defined on only one interface in an IPMP group. Should the interface where the data addresses are defined fail during system boot, an alternative working interface is potentially never recognized—the data addresses do not failover. This situation does not occur if an alternative interface within IPMP group has a data address configured.

Therefore, it is recommended to define data addresses for every interface in an IPMP group. Using the standby feature is not recommended because a standby interface by definition, may only have a test address defined.

Design Parameters

The parameters defined in TABLE 1 are used in the commands and examples throughout this article for configuration of IP network multipathing:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network adapter interfaces (active or standby) (I/O slot, port number)</td>
<td>qfe0 (active) (slot 0, Port 0) qfe4 (active) (slot 1, Port 0)</td>
</tr>
<tr>
<td>Group name</td>
<td>Production</td>
</tr>
<tr>
<td>IP Address (name) interface</td>
<td>192.168.49.42 (camelot) qfe0 192.168.49.7 (camelot-1) qfe4</td>
</tr>
<tr>
<td>Test address (name)</td>
<td>qfe0 = 192.168.49.105 (camelot-qfe0) qfe4 = 192.168.49.106 (camelot-qfe4)</td>
</tr>
<tr>
<td>Netmask</td>
<td>255.255.255.0</td>
</tr>
<tr>
<td>Is the node to perform network routing?</td>
<td>No</td>
</tr>
</tbody>
</table>
Configuration

The following sections describe the steps required to configure an IP network multipathing group with two active interfaces. These sections use the specifications defined in TABLE 1 and cover the following topics:

- Enabling unique Ethernet MAC addresses.
- Defining TCP/IP addresses.
- Disabling routing (if applicable).
- Configuring the network interfaces.

Enabling Unique Ethernet MAC Addresses

To support the setting of a unique MAC address automatically, the adapter must have a MAC address stored in its Fcode PROM. Not all network adapters (particularly on-board adapters) have this feature. In this situation, the MAC addresses must be set manually.

The definitive way to determine if a MAC address will be set automatically is to try it and check the outcome. Follow the procedure below:

1. Set the EEPROM variable local-mac-address? to true as follows:

```bash
# eeprom local-mac-address?=true
```

Note: With the preceding command, the server must be rebooted for the change to take effect.

2. If working at the OpenBoot™ Prompt (OBP), enter the following command:

```bash
c> setenv local-mac-address? true
```

3. Boot the server and plumb each of the interfaces in the IP network multipathing group by issuing the following command for each interface:

```bash
# ifconfig <interface> plumb
```
4. Execute the following command to determine the MAC address for each interface. The following codebox also includes an example of the output:

```
# ifconfig -a
hme0: flags=1000843< Broadcast, Running, Multicast, IPv4> mtu 1500 index 2
   inet 0.0.0.0 netmask 0
   ether 8:0:20:f7:c3:f
hme1: flags=1000842< Broadcast, Running, Multicast, IPv4> mtu 1500 index 8
   inet 0.0.0.0 netmask 0
   ether 8:0:20:f7:c3:f
```

5. The ether line shows the MAC address. If any interfaces are showing identical MAC addresses and are connected to the same subnet, then set the MAC addresses manually with the following command:

```
# ifconfig <interface> ether <MAC address>
```

It is suggested that the last three octets of the MAC address be made the same as the last three octets of the test address. This address convention helps make the MAC address unique within a subnet—for example, 192.168.49.106 – 08:00:20:a8:31:6a. Although the chance of a MAC address conflict is extremely small, it can be checked for by using the snoop command to search for the chosen MAC address, while using the ping command to verify connection to the broadcast address of the subnet.

Note: If a MAC address is to be set manually, insert the ether parameter when the interface is configured in the following sections.

Additionally, it is possible to determine whether the Fcode PROM of some Ethernet adapters has a local MAC address with the following command:

```
# prtconf -vp | grep local-mac-address
```

Therefore, if local-mac-addresses are displayed for all interfaces, except the on-board adapter, then the setting of local-mac-address provides unique addresses. Because this command has not been tested against all adapters, it is not a recommended method, however, if used diligently it may be helpful.
Defining TCP/IP Addresses

The interface data addresses and IPMP test addresses should be added to \texttt{/etc/hosts} file. It is assumed that no existing network configuration information exists on the server. For example (using the example addresses defined in TABLE 1), the following lines should be included in \texttt{/etc/hosts} file:

```
# # # IP Network Multipathing Group - Production #
192.168.49.42 camelot # Data Address
192.168.49.7 camelot-1 # Additional Data Address
192.168.49.105 camelot-qfe0 # Test Address for qfe0
192.168.49.106 camelot-qfe4 # Test Address for qfe4
```

The netmask setting for the subnet should be set in the \texttt{/etc/netmasks} file. Using the example addresses defined in TABLE 1, the following line should be included in the \texttt{/etc/netmasks} file:

```
192.168.49.0 255.255.255.0
```
Disabling Routing

If the node is not intended to perform network routing, enter the following command:

```
# touch /etc/notrouter
```

Note: The server must be rebooted for this change to take effect unless the IP driver parameter, `ip_forwarding` is set to zero using the `ndd /dev/ip` command.

Configuring the Network Interfaces

After the network address information has been added to the `/etc/hosts` and `/etc/netmasks` files, the network interfaces can be configured. The following commands perform the configuration dynamically. In addition, the following paragraphs describe how to create a permanent configuration. In the following examples, the addresses defined in TABLE 1 are used.

Create the network interfaces:

```
# ifconfig qfe0 plumb
# ifconfig qfe4 plumb
```

Create an IP network multipathing group named `production`, which consists of network interfaces `qfe0` and `qfe4`:

```
# ifconfig qfe0 group production
# ifconfig qfe4 group production
```

After executing the commands above, the following syslog messages may be issued. The messages simply warn that failures cannot be detected, until test addresses are established on the interfaces.

```
May 21 14:14:15 camelot in.mpathd[430]: Failures cannot be detected on qfe0 as no IFF_NOFAILOVER address is available
May 21 14:14:15 camelot in.mpathd[430]: Failures cannot be detected on qfe4 as no IFF_NOFAILOVER address is available
```
Use the following commands to create an address on each interface for data transmission and add the `failover` flag. The `failover` flag allows the address to migrate if an interface failure is detected.

```bash
# ifconfig qfe0 camelot  netmask + broadcast + failover up
# ifconfig qfe4 camelot-1 netmask + broadcast + failover up
```

The following commands configure a test address on each network interface; these addresses are used by `mpathd` to detect interface failures. Test addresses should not be used by host applications for data communication; hence, they should be marked with the `deprecated` flag. In addition, test addresses must not failover and should also be marked with the `-failover` flag. It is the presence of this `-failover` flag that causes `in.mpathd` to use the address as a test address, because it is tied to the interface. If IPMP was used to detect failures and not to provide failover, these test addresses could be omitted and the `-failover` flag could be used to define the data addresses.

```bash
# ifconfig qfe0 addif camelot-qfe0 netmask + broadcast + \ -failover deprecated up
# ifconfig qfe4 addif camelot-qfe4 netmask + broadcast + \ -failover deprecated up
```

to enable the interface configuration to persist after a reboot, the files `hostname.qfe0` and `hostname.qfe4` must be created in the `/etc` directory. The files should look as follows:

For `hostname.qfe0`:

```text
camelot  netmask + broadcast + failover up \
group production \ 
addif camelot-qfe0 netmask + broadcast + \ 
deprecated -failover up
```

For `hostname.qfe4`:

```text
camelot-1 netmask + broadcast + failover up \ 
group production \ 
addif camelot-qfe4 netmask + broadcast + \ 
deprecated -failover up
```
Note: If the MAC address of an interface must be set manually do this as a separate RC script, the ether parameter cannot be included in the above files.

Bug ID: 4710499, “Synopsis: rpc.bootparamd cannot send out reply with physical interface flag DEPRECATED

The advice in the original article was to place the test addresses on the physical interfaces. That is, on qfe0 and qfe4 and not on the logical interfaces qfe0:1 and qfe4:1 as is now described. The reasoning behind tying the test addresses to the physical interface was as follows.

It simplifies management; the test addresses will not failover, and therefore, they can always be guaranteed to be the first address on an interface. An interface may have more than one data address and this allows for a company standard. For example, test addresses are always found on the physical interface. The logical interfaces can be unplumbed (for example, ifconfig qfe0:1 unplumb), whereas unplumbing the physical interface also removes all logical addresses. While data addresses may need to be unplumbed, the test addresses should remain for as long as an interface is wired to a particular subnet.

Unfortunately, following the above, original, advice of placing a test address on the physical interface reveals Bug ID: 4710499, see http://sunsolve.sun.com/ in a small number of circumstances. Namely, where the server is being used as a bootp server. Typically, this is when the machine is acting as a JumpStart™ server. The client sends out a bootp request, but never receives a reply. There is also a problem where network file system (NFS) is run over user datagram protocol (UDP). However, given that resilience is unlikely to figure in this configuration it would be anticipated this will be extremely rare case.

ping

If for any reason, a message similar to the following is generated from using the ping command to verify connection to one of the data addresses, consult “Addendum – The Problem With ping” on page 17.

```console
ICMP Protocol Unreachable from gateway camelot (192.168.49.42) for icmp
from clusterclient00 (192.168.49.4) to camelot (192.168.49.42)
```
Basic Management

The configuration of all network adapters can be viewed using the following command:

```
# ifconfig -a
```

Using the example addresses defined in TABLE 1, the `ifconfig -a` command yields the following output:

```
lo0: flags=1000849<UP,LOOPBACK,RUNNING,MULTICAST,IPv4> mtu 8232
    index 1
    inet 127.0.0.1 netmask ff000000
qfe0:   flags=1000843<UP,BROADCAST,RUNNING,MULTICAST,IPv4> mtu 1500
        index 2
        inet 192.168.49.42 netmask ffffff00 broadcast 192.168.49.255
        groupname production
        ether 8:0:20:c7:6e:bc
qfe0:1: flags=9040843<UP,BROADCAST,RUNNING,MULTICAST,DEPRECATED,IPv4,NOFAILOVER> mtu 1500 index 2
        inet 192.168.49.105 netmask ffffff00 broadcast 192.168.49.255
qfe4:   flags=1000843<UP,BROADCAST,RUNNING,MULTICAST,IPv4> mtu 1500
        index 3
        inet 192.168.49.7 netmask ffffff00 broadcast 192.168.49.255
        groupname production
        ether 8:0:20:b3:e6:f7
qfe4:1: flags=9040843<UP,BROADCAST,RUNNING,MULTICAST,DEPRECATED,IPv4,NOFAILOVER> mtu 1500 index 3
        inet 192.168.49.106 netmask ffffff00 broadcast 192.168.49.255
```

The output in the preceding codebox shows that four addresses have been defined. The two IP network multipathing test addresses, qfe0:1 and qfe4:1, are tied to each interface; that is, they are marked NOFAILOVER, and will not migrate to the surviving interface during a failure. The purpose of the addresses being marked NOFAILOVER is to detect failure and recovery of an interface.
Interface Failure

To test that IP network multipathing is functioning correctly (using the example configuration defined in TABLE 1), unplug the network cable attached to qfe0. This causes the following error messages to be displayed on the console:

```
Dec 11 16:32:49 camelot qfe: NOTICE: SUNW,qfe0: No response from Ethernet network: Link Down - cable problem?
Dec 11 16:32:57 camelot in.mpathd[36]: NIC failure detected on qfe0
Dec 11 16:32:57 camelot in.mpathd[36]: Successfully failed over from NIC qfe0 to NIC qfe4
Dec 11 16:33:01 camelot qfe: NOTICE: SUNW,qfe0: No response from Ethernet network: Link Down - cable problem?
```

Note: It takes approximately 10 seconds to detect and recover from a failure with the default configuration. The configuration of the IP Networking Multipathing daemon is set in the `/etc/default/mpathd` file.
Executing the `ifconfig -a` command produces the following output:

```
lo0: flags=1000849<UP,LOOPBACK,RUNNING,MULTICAST,IPv4> mtu 8232
     index 1
     inet 127.0.0.1 netmask ff000000
qfe0: flags=19000842<BROADCAST,RUNNING,MULTICAST,IPv4,NOFAILOVER,FAILED>
     mtu 1500 index 3
     inet 0.0.0.0 netmask 0
     groupname production
     ether 8:0:20:b3:e6:f7
qfe0:1 flags=19040843<UP,BROADCAST,RUNNING,MULTICAST,DEPRECATED,IPv4,NOFAILOVER,FAILED> mtu 1500 index 2
     inet 192.168.49.105 netmask ffffff00 broadcast 192.168.49.255
     groupname production
     ether 8:0:20:c7:6e:bc
qfe4: flags=1000843<UP,BROADCAST,RUNNING,MULTICAST,IPv4> mtu 1500 index 3
     inet 192.168.49.7 netmask ffffff00 broadcast 192.168.49.255
     groupname production
     ether 8:0:20:b3:e6:f7
qfe4:1 flags=9040843<UP,BROADCAST,RUNNING,MULTICAST,DEPRECATED,IPv4 NOFAILOVER> mtu 1500 index 3
     inet 192.168.49.106 netmask ffffff00 broadcast 192.168.49.255
qfe4:2: flags=1000843<UP,BROADCAST,RUNNING,MULTICAST,IPv4> mtu 1500 index 3
     inet 192.168.49.42 netmask ffffff00 broadcast 192.168.49.255
```

Notice in the preceding codebox the output, `qfe0` has been marked as FAILED and the IP address 192.168.49.42 has been moved from `qfe0` to `qfe4:2`; thus, clients can still reach the host at this address.

Note: To detect errors on a single network interface, use IP network multipathing configured with a group containing one interface and a data address marked NOFAILOVER. However, be aware that there is no resilience in such a configuration. Further information on this feature can be found in the *IP Network Multipathing Administration Guide* section of the Solaris 8 OE documentation. Go to: http://docs.sun.com/
Summary

This article described the necessary steps to configure IP network multipathing, and focused on obtaining maximum resilience with the following configurations:

- Create more than one physical connection to each subnet.
- Connect each subnet to different network adapters on different I/O boards.
- Connect the same subnet to the same port number on different network adapters.
- Create a test network address for each network adapter.
- Create a data address for each adapter to guard against boot time failures.

Addendum - snoop of Failover

The network cable connected to the qfe0 interface was unplugged to cause the failover and then reconnected to cause the failback. A trace was taken of the network traffic during these events.

The following console messages, show the times of failure detection and recovery. The times can be cross-referenced against the network trace so that the traffic caused by the failure and recovery can be identified.

```
camelot#
camelot#
camelot#
camelot# May 9 16:18:28 camelot qfe: SUNW,qfe0 : No response from Ethernet network : Link down -- cable problem?
May 9 16:18:35 camelot in.mpathd[33]: NIC failure detected on qfe0 of group production
May 9 16:18:35 camelot in.mpathd[33]: Successfully failed over from NIC qfe0 to NIC qfe4
May 9 16:18:40 camelot qfe: SUNW,qfe0 : No response from Ethernet network : Link down -- cable problem?
May 9 16:18:51 camelot last message repeated 1 time
May 9 16:19:01 camelot qfe: SUNW,qfe0 : External Transceiver Selected.
May 9 16:19:01 camelot qfe: SUNW,qfe0 : Auto-Negotiated  100 Mbps Half-Duplex Link Up
May 9 16:19:17 camelot in.mpathd[33]: NIC repair detected on qfe0 of group production
May 9 16:19:17 camelot in.mpathd[33]: Successfully failed back to NIC qfe0

The following is the network trace taken

16:18:24.43283 camelot-qfe0 -> defrtr ICMP Echo request (ID: 8450 Sequence number: 10541)
16:18:24.43349 defrtr -> camelot-qfe0 ICMP Echo reply (ID: 8450 Sequence number: 10541)
16:18:25.57280 camelot-qfe4 -> defrtr ICMP Echo request (ID: 8451 Sequence number: 10508)
16:18:25.57361 defrtr -> camelot-qfe4 ICMP Echo reply (ID: 8451 Sequence number: 10508)
```
The repeating ICMP Echo requests and replies have been deleted.
Addendum – The Problem With ping

There is a problem with ping and IP network multipathing between Solaris OE version 8 update 2 (10/00) and Solaris OE version 8 update 4 (04/01). The problem has been fixed in Solaris OE version 8 update 5 (07/01) and later. If the router discovery daemon (in.rdisc) is running, this problem does not present itself. However, if in.rdisc is not running—for example, if an /etc/defaultrouter file was created—the following ICMP messages appear if the data address in an IP Mutlipathing group is sent a ping request (not necessarily on the first attempt):

To a degree, this is a cosmetic problem. The ICMP Echo request (ping) has generated an ICMP Echo reply. However, in advance of the reply, it has also generated an ICMP Protocol Unreachable response. If the exit status of a ping command is queried, then a success would be determined. But this is not the case for all varieties of the ping
command. For example, using the ping command under Windows 98, it reports that the destination is unreachable. This would be somewhat confusing, because the destination is indeed reachable.

There are basically three approaches to dealing with this problem, which are listed below:

1. Ensure that in.rdisc is running either by not creating an /etc/defaultrouter file or by starting up in.rdisc by some other means. To ensure in.rdisc is running, an example startup script could be created. An example of such a startup script is provided at the end of this section.

It should be pointed out that in.rdisc is a potential security issue; hence, this solution may not be acceptable in all situations. The router discovery daemon is an implementation of dynamic routing that uses ICMP router discovery.

“There are several problems with dynamic routing that attackers can use to initiate denial of service attacks or view packet data from inaccessible systems. First, routing information can be forged. Routing information is typically sent through broadcast or multicast packets. An attacker can generate routing information packets claiming to be from a router and send them out to hosts or routers. These packets can direct hosts to send packets to a system that is not a router or to a busy router that cannot handle the increase in traffic. Misconfigured routers generate their own denial of service problems. A more sophisticated attack involves directing packets through a multihomed system to examine the packet data as it flows across this system, which now functions as a router. The attacker sends forged routing information packets to a router claiming a lower hop count metric to a destination network that the attacker cannot access. The target router then routes packets through the compromised system allowing the attacker to examine the traffic."

2. Ignore the ICMP message that affects only the ping command, it could be viewed as superfluous. Beware of those versions of the ping command that report only the first message returned, this is an error message and may cause the ping command to report the destination as unreachable. Hence, this solution may not be applicable in all situations.

3. Avoid sending ping requests to the data addresses and send them to the test addresses instead.
Starting \texttt{in.rdisc} By Other Means

The configuration of the network routing tables and default routes is handled automatically by the router discovery daemon (\texttt{in.rdisc}).

If routes are defined in the \texttt{/etc/defaultrouter} file, the \texttt{in.rdisc} daemon will not be started in the \texttt{/etc/rc2.d/S69inet} file and will lead to ICMP messages being generated as follows, when the node is sent a \texttt{ping} request (not necessarily on the first \texttt{ping}):

\begin{verbatim}
ICMP Protocol Unreachable from gateway camelot (192.168.49.42) for icmp from clusterclient00 (192.168.49.4) to camelot (192.168.49.42)
\end{verbatim}

Additionally, \texttt{in.rdisc} will fail to start if a working data address is not present at boot time (because it is started with the \texttt{-s} flag in \texttt{/etc/rc2.d/S69inet}).

To ensure that \texttt{in.rdisc} is started under all circumstances, create an additional \textit{startup} script called \texttt{/etc/init.d/rdisc}. Create a hard link between this script and an appropriate file name in the startup directory. This determines at which point the script is run during the boot sequence. In this instance, the link would be created as follows:

\begin{verbatim}
ln /etc/init.d/rdisc /etc/rc2.d/S70rdisc
\end{verbatim}

The following is an example shell script that the file \texttt{/etc/init.d/rdisc} could contain to ensure the startup of the \texttt{in.rdisc} daemon:
About the Author

Mark Garner is a staff engineer with Sun’s Enterprise Engineering organization where he focuses on a broad range of best practice procedures using Sun solutions. Mark joined Sun’s professional Service organization in 1998 assisting numerous Global 1000 and Fortune 500 companies implement datacenter solutions. His experience spans financial services, science, government, transportation, retail, utilities, entertainment, and Internet service providers. Mark has over 16 years experience in the computer industry. Prior to joining Sun, he was a Systems Architect with IBM UK, Systems Integration Manager with NERC, and a developer for several leading software development companies.
Ordering Sun Documents

The SunDocs℠ program provides more than 250 manuals from Sun Microsystems, Inc. If you live in the United States, Canada, Europe, or Japan, you can purchase documentation sets or individual manuals through this program.

Accessing Sun Documentation Online

The docs.sun.com web site enables you to access Sun technical documentation online. You can browse the docs.sun.com archive or search for a specific book title or subject. The URL is http://docs.sun.com/

To reference Sun BluePrints OnLine articles, visit the Sun BluePrints OnLine Web site at: http://www.sun.com/blueprints/online.html